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1 INTRODUCTION

The metaheuristic optimization tool (MOT) is a generic python module for solving a real value,
multiobjective, multidimensional optimization problem. Users design their optimization problem by
defining search variables, simulations, evaluation metric functions, and constraints. Search variables and
constraints are straightforwardly added via python object methods, while simulations and metric functions
used for search variable set evaluation must be implemented as a python class. Final optimum result(s) are
provided in a tabular text file, as well as search history if needed.

As a problem-independent method, metaheuristic optimization is reliable for solving challenging, high
dimensional, nonconvex, noncontinuous problems. MOT currently supports two metaheuristic
optimization methods: simulated annealing (SA) and adaptive particle swarm optimization (APSO). Except
for SA, methods that are currently and will continue to be supported by the MOT must be (1) robust or
converging to the same optimum result with any initialization, (2) problem independent or not sensitive to
any parameter tuning, and (3) simple.

Currently, the multiobjectivity of an optimization problem is solved via the weighted sum aggregation
approach and the Pareto nondominance sorting approach. The weighted sum aggregation approach yields a
single optimum aggregated response value corresponding to the specified importance weight configuration,
while the Pareto nondominance sorting approach yields a set of Pareto optimal values.

Constraints are categorized into 2 types: penalizing constraints and hard constraints. A penalizing
constraint penalizes the evaluation score according to the violation degree. A hard constraint becomes the
first priority in optimization; whenever a hard constraint is violated, the optimization problem is switched
to minimize the hard constraint’s degree of violation.

The remainder of this report is organized as follows. In Section 2, related methodologies and procedures
are discussed, including basic concepts of multiobjective optimization, the selected metaheuristic methods,
and some specific treatments. In Section 3, a description is provided of MOT’s building block and its
pythonic usage are presented. Some examples are provided in Section 4. Finally, plans for future
development are discussed in Section 5.
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2 METHODOLOGY AND PROCEDURE

A basic introduction to metaheuristic method is presented below; and simple, single objective optimization
is considered first. An analogy of an optimization scheme as particles moving in a search space is
discussed to illustrate how the metaheuristic method works. Then the more advanced metaheuristic
methods, and constraint treatments are discussed.

2.1 SINGLE OBJECTIVE OPTIMIZATION

In single objective optimization, the goal is to find a set of search variables (or design parameters),

x = [x1, x2, . . . , xI] , (1)

within a certain search space
xi ∈

[
xmin

i , xmax
i

]
, i = 1, 2, . . . , I, (2)

that gives maximum∗ value of a fitness function:

F(x). (3)

The fitness function F(x) may be noncontinuous and may also be nonconvex, in which case there exist
several local maxima. Given the generality of the encountered fitness function, the problem-independent
metaheuristic methods are preferred over the more specialized methods such as gradient descent–based
methods.

It is interesting to analogize an optimization problem as a moving particle in a search space. To better
visualize this, consider the following single objective, two-dimensional optimization problem. With two
search variables, x = [x, y] the Beale function is taken as the fitness function:

F(x, y) = (1.5 − x + xy)2 + (2.25 − x + xy2)2 + (2.625 − x + xy3)2. (4)

The search space is bounded as
x, y ∈ [−4.5, 4.5], (5)

and here a minimization problem is considered with the following solution:

F(3, 0.5) = 0. (6)

The search space is shown in Figure 1. The initial conjecture (x0, y0) will be the particle’s first location.
Guided by an optimization procedure, the particle moves (or jumps), generating new, hopefully better
solutions, and it converges into the actual global optimum solution. Figure 1 shows the particle track (blue
line) generated by the Newton gradient descent method as the optimizer, which essentially forces the
particle to roll down the hill. The considered fitness function here is very well defined and is continuous,
with a known gradient, which makes the gradient descent–based method the method of choice. Even so,
such a specialized method could still converge into a local minimum, as it depends on the initial conjecture:
for example, if the particle were initialized at the upper left corner instead (see Figure 1). Metaheuristic
optimization methods are discussed below.

∗Minimization problem could be treated similarly by putting minus to the fitness/metric function.
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Figure 1. Minimization test problem Beale function solved with conjugate gradient method. The blue
contour indicates lower fitness or a better solution. The red star denotes the global minimum. The blue line
connected to the star represents the optimization track

2.2 SIMULATED ANNEALING

Simulated annealing (SA) does not include all three criteria mentioned in Section 1, as it relies mostly on
parameter tuning. However, due to its simplicity, it serves as a good tool for introducing the metaheuristic
method’s basic features.

[Step 0] Beginning with a single initial conjecture or particle location,

x(0) =
[
x(0)

1 , x(0)
2 , . . . , x(0)

I

]
. (7)

This could be a random point.

[Step 1] At each iteration n, the particle location is randomly perturbed, with a perturbation fraction r:

x(n+1)
i = x(n)

i + r (ξ − 0.5)
(
xmax

i − xmin
i

)
, i = 1, 2, . . . , I (8)

ξ = random[0, 1]. (9)

Then the perturbed location is clamped to guarantee that it does not exceed the search space:

x(n+1)
i = min

[
xmax

i , x(n+1)
i

]
(10)

x(n+1)
l,i = max

[
xmin

i , x(n+1)
l,i

]
. (11)

[Step 2] The perturbed location is accepted if it yields better fitness:

F(x(n+1)) ≥ F(x(n)). (12)

If the result is worse than the previous fitness, then the perturbed location is accepted with a probability p,
which depends on the current and previous fitness difference ∆E and the annealing temperature T :

∆E = F(x(n+1)) − F(x(n)) (13)
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p = exp
(
∆E
T

)
. (14)

[Step 3] Then the annealing temperature T is allowed to decay in each iteration:

T = T0α
n, (15)

where T0 ≥ 0 and α ∈ [0, 1].

[Step 4] Return to [Step 1] for iteration.

Parameter tuning is important in SA. A large initial temperature T0 and high-temperature cooling schedule
α allow for more exploration in the search space, avoiding possible premature convergence into local
optimum. However, making these factors too large results in the search slowly converging to any optimum.

It is also beneficial to anneal the perturbation fraction:

r = r0β
n. (16)

This helps in fine-tuning the final solution, yet it gives another parameters to tune. Figure 2 illustrates how
SA works, showing that SA failed to find the global optimum with the given initial location and annealing
parameters.

Figure 2. SA applied to test problem Beale function. The gray line represents the search path. The
image is taken after 360 iterations. The red star denotes the global minimum. The yellow cross represents
the recorded best solution at this stage. The annealing parameters are T0 = 1.0, α = 0.95, r0 = 1.0, and
β = 0.99.

Another undesirable feature of SA is that it does not take advantage of the search history. It only compares
the last two search solutions. Thus, we consider SA as a trajectory approach. Another approach that takes
advantage of more (yet not all) search history is the populational approach, which employs several search
particles in parallel. It gathers information from the current particle population and uses that to improve the
particle population in the next generation. One of the more recently developed populational methods is the
particle swarm optimization (PSO).
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2.3 PARTICLE SWARM OPTIMIZATION

Particle swarm optimization (PSO) [1] is inspired by bird flocking and fish schooling. Imagine several
particles moving in the search space and communicating with each other, working together to search for
the best location. Each particle l carries the following information:

• the current location representing the search variable set x(n)
l ,

• the corresponding fitness value of the current location,

• a personal best location x(pBest)
l ,

• the associated best fitness value, and

• velocity vl that directs the particle to the point to which it will jump in the next generation.

Furthermore, each particle knows the location of the current best particle x(gBest) which found the current
global best location.

[Step 0] First, the particle locations and velocities (which could be random points and zeros respectively)
are analyzed:

x(0)
l =

[
x(0)

l,1 , x
(0)
l,2 , . . . , x

(0)
l,I

]
, l = 1, 2, . . . , L, (17)

vl =
[
vl,1, vl,2, . . . , vl,I

]
. (18)

[Step 1] At each iteration n, the velocity of each particle l is updated:

vl,i = wvl,i + ξl,i,1c1
[
x(pBest)

l,i − xl,i
]

+ ξl,i,2c2
[
x(gBest)

i − xl,i
]
, i = 1, 2, . . . , I. (19)

[Step 2] Then the particle locations are updated accordingly:

x(n+1)
l,i = x(n)

l,i + vl,i. (20)

The new location is clamped to guarantee that it does not exceed the search space:

x(n+1)
l,i = min

[
xmax

i , x(n+1)
l,i

]
(21)

x(n+1)
l,i = max

[
xmin

i , x(n+1)
l,i

]
. (22)

[Step 3] Return to [Step 1] for iteration.

As with SA, PSO depends on tuning several parameters (w, c1, c2) emerging in the velocity update in
Equation 19. Considering the parameter in the first term, the particle inertia weight w, the inertia weight
determines how much the previous velocity impacts the current velocity. This also serves to suppress the
particle movement, leading to a more fine-tuned search. Figure 3 illustrates how inertia weight affects the
particle search. With the other parameters set to zero, all particles continue moving forward following their
initial velocity while gradually being slowed down by inertia weight.

Now the second parameter, c1, is added, which is called the cognitive acceleration. Figure 4 illustrates how
c1 affects the particle search path. Here the particles are taught to learn their own success. They keep track
of their best location so far and then try to return to that location if they happen to move to a worse
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location. However, they may not return to that exact location, as randomness has been included in the
process. Here, a local search feature is added to each the particle. Given well-spread particles, this
parameter introduces an element of effective exploration into the method.

Now an attempt is made to turn off the cognitive acceleration c1 and activate the social acceleration c2.
Figure 5 illustrates how c2 affects the particle search path. Social acceleration c2 differs from cognitive

Figure 3. PSO applied to test problem Beale function - weight inertia w significance. The four colors
of the circles and lines represent different particles and their search paths. The image is taken after 90
iterations. The red star denotes the global minimum. The yellow cross represents the recorded best solution
so far. The search parameters are w = 0.9, c1 = 0, and c2 = 0.

Figure 4. PSO applied to test problem Beale function - cognitive acceleration c1 significance.The four
colors of circles and lines represent different particles and their search paths. The image is taken after 90
iterations. The red star denotes the global minimum. The yellow cross represents the recorded best solution
so far. The search parameters are w = 0.9, c1 = 1.0, and c2 = 0.
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acceleration in that it drives the particles to move toward the global population success, the best particle
location. This helps the population to jump and converge to what is hopefully the global optimum. This
also adds an element of exploitation around the assumed best location. However, if c2 is too large relative
to c1, it may lead to premature convergence into the local optimum.

Now the cognitive acceleration c1 is turned back on to see if both of the accelerations work together. Figure
6 illustrates how these parameters affect the search path together. Interestingly, the red particle was
attracted to its own success while it was approaching the global success. It turns away from the current best
location, which is a local optimum, and moves toward another best location, which in this case is the global
optimum. However, the other particles are not following the better path of the red particle, as they are more
attracted to their own success.

Clearly, just like SA, PSO also suffers from parameter tuning. A larger inertia weight w during exploration
would be useful, but smaller w is needed during convergence. Cognitive and social accelerations, c1 and c2,
are based on the tendency of the particle to follow its own success or the global success, respectively.
During exploration, larger c1 and smaller c2 are desirable, while during convergence, smaller c1 and larger
c2 are desirable.

Experiments revealed that the recommended values for these parameters are w ∈ [0.4, 0.9],
c1, c2 ∈ [1.5, 2.5], and c1 + c2 ∈ [3.0, 4.0]. It is interesting to introduce annealing process to these
parameters, but it is not always the case that idealized monotonic transition occurs from exploration into
the convergence search mode. Therefore, it would be useful to adaptively change the search parameters
according to the particles’ current state: exploration, convergence, or something between and beyond.
Adaptive particle swarm optimization is discussed in the following section.

Figure 5. PSO applied to test problem Beale function - social acceleration c2 significance.The four
colors of circles and lines represent different particles and their search paths. The image is taken after 90
iterations. The red star denotes the global minimum. The yellow cross represents the recorded best solution
so far. The search parameters are w = 0.9, c1 = 0.0, and c2 = 0.1.
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Figure 6. PSO applied to test problem Beale function - combination of cognitive and social accelera-
tion significance.The four colors of circles and lines represent different particles and their search paths. The
image is taken after 90 iterations. The red star denotes the global minimum. The yellow cross represents the
recorded best solution so far. The search parameters are w = 0.9, c1 = 1.0, and c2 = 0.1.

2.4 ADAPTIVE PARTICLE SWARM OPTIMIZATION

In APSO [2], evolutionary state estimation (ESE) adaptively changes the parameters w, c1, and c2 leading
to an effectively converging method, while the elitist learning system (ELS) carefully searches for other
possible, better optima, avoiding premature convergence.

2.4.1 Evolutionary State Estimation

The procedure in this subsection is performed before [Step 1] of PSO. Here, evolutionary factor f is
introduced. This evolutionary factor is determined from each particle’s mean distance to all the other
particles d:

dl =
1

L − 1

L∑
q=1

√√√ I∑
i=1

(
xl,i − xq,i

)2
(23)

f =
dbest − dmin

dmax − dmin
∈ [0, 1]. (24)

This evolutionary factor represents the current search mode or state of the particles. A larger f indicates
that the best particle is remotely located away from the swarm, while a smaller f means that the best
particle is surrounded in the swarm (See Figure 7).

A sigmoid mapping function is used to adaptively change the inertia weight according to the evolution
factor:

w( f ) =
1

1 + 1.5e−2.6 f
∈ [0.4, 0.9]. (25)
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Figure 7. Typical particle locations for small (left) and large (right) evolutionary factor f [2].

Also, evolutionary factor f is used to classify the particle population state into one of the four defined
states: jumping out (S 1), exploration (S 2) , exploitation (S 3), and convergence (S 4). The state classification
is performed by employing fuzzy membership degree function. Figure 8 shows an experimentally
optimized fuzzy membership degree function for ESE. At any given value f , each member group has a
membership degree representing the probability that the current state is classified as its member. Those
probabilities at any value of f are normalized to one before classification sampling is performed.

Figure 8. Fuzzy membership degree function employed in MOT. The member groups are jumping out
(S 1), exploration (S 2), exploitation (S 3), and convergence (S 4).

Each state has its own strategy for updating the acceleration parameters, as shown in Table 1. The
procedure implemented in MOT is as follows:

ci = ci ± 0.05(1.0 + ξ), i = 1, 2. (26)

A factor of 0.05 is added to the second term for the “slight” changes.

Table 1. Strategy for adaptive change of acceleration parameters c1 and c2

No. Strategy c1 c2
S 1 Jumping-out Decrease Increase
S 2 Exploration Increase Decrease
S 3 Exploitation Slight increase Slight decrease
S 4 Convergence Slight decrease Slight increase

10



2.4.2 Elitist Learning System

This following procedure is performed between [Step 2] and [Step 3] of PSO. In ELS, the best particle
randomly mutates one dimension of its personal best location (the current global best). If it yields worse
fitness, then the worst particle will take the mutated position instead. As in SA’s annealing perturbation
fraction, ELS mutation uses a normally distributed perturbation with the annealing standard deviation, as
shown in the following:

xd = xd +
(
xmax

d − xmin
d

)
N

(
0, σ2

)
(27)

σ = σ − (σmax − σmin)
n
N
, (28)

where the recommended value of maximum and minimum standard deviation are 1.0 and 0.1, respectively.

2.5 MULTIOBJECTIVE OPTIMIZATION

Multiobjective optimization includes several objectives to be optimized:

f (x) =
[
f1, f2, . . . , fK

]
. (29)

However, these objectives usually contradict one another. This gives rise to the Pareto optimality concept,
which argues that generally there is no single solution to a multiobjective optimization problem; instead
there is a continuous number of solutions, called the Pareto optimum solution, in which one objective
cannot be improved without reducing another (see Figure 9). The green solid line represents the Pareto
front, which is a line of Pareto optimum solutions. This subsection discusses the two most commonly used
approaches in addressing multiobjective optimization problem—the weighted sum aggregation approach
and the Pareto nondominance approach.

Figure 9. Example of two objective optimizations illustration of the Pareto front [4]. Blue area S
represents the search variable. The space labeled with a Z on the right represents the acceptable region of
the two evaluation functions. The green solid line represents the Pareto front.
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2.5.1 Weighted Sum Aggregation

Weighted sum aggregation may be the simplest, most widely used approach. The objective metric
functions fk(x) are aggregated into one single response or fitness function F(x) by assigning an importance
weight wk to each objective:

F(x) =

K∑
k=1

wk f norm
k (x) (30)

K∑
k=1

wk = 1, (31)

where the normalized objective metric is

f norm
k (x) =

fk(x) − f min
k

f max
k − f min

k

. (32)

The user must specify the f min
k and f max

k . It is recommended that the maximum and minimum possible
values be used within the search space by running unconstrained single objective maximization and
minimization, respectively, for each objective metric. These could be rough searches, as in running the
search with small number of generations, computational meshes, probabilistic samples, and/or using
regression models to replace expensive evaluations.

This approach reduces the problem to a single objective optimization which can be solved by the SA or
APSO methods previously discussed. Given a set of weights, the resulting global optimum of the fitness
function F(x) falls at a point in the Pareto front (See Figure 10). Therefore, with the summed weight
aggregation approach, only one Pareto optimum solution can be obtained that is associated with the weight
configuration. Other Pareto optimum solutions could be obtained by reconfiguring the importance weight
and/or adding the optimization constraints, which will be discussed in Subsection 2.6.

2.5.2 Pareto Nondominance Sorting Approach

In a multiobjective optimization problem, a nondominated solution set is a set of all the solutions that are
not dominated by any member of the solution set. Dominance in this context denotes that one sample is
superior to another sample in every objective. Thus, a solution to a multiobjective optimization problem is
not a single point, but is rather a set of solutions along the Pareto front. The nondominated sorting genetic
algorithm (NSGA) - II is a multiobjective optimization genetic algorithm that uses an explicit
diversity-preserving strategy, along with an elite preservation strategy, to find the Pareto front [5]. With
every generation, it uses a nondominated sorting method to rank the solutions to a number of mutually
exclusive nondominated sets, or fronts. It also attributes a crowding distance for every sample that is
evaluated later to maintain diversity (Fig. 11). Then, through a selection method that prefers samples with
higher rank and better crowding distance, the superior samples move on to the next generation.
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Figure 10. Weighted sum aggregation in multiobjective optimization [4]. The orange solid line illus-
trates the weight of importance configuration. The diagonal arrow represents the gravity of the optimization
search. The orange circle represents the global optimum corresponding to the specified weight configuration.

2.6 HANDLING OPTIMIZATION CONSTRAINTS

This section introduces constraints into the optimization problem:

g j
(
x
)
≤ 0, j = 1, 2, . . . , J. (33)

which is typically
g j

(
x
)

= A j − g̃ j
(
x
)

(34)

or
g j

(
x
)

= g̃ j
(
x
)
− B j. (35)

Note that g̃ j
(
x
)

could be one of the fk
(
x
)
.

There are several ways to treat constraint violation; the simplest is perhaps to reject the violating solution
by returning the lowest or the worst possible fitness value. However, this treatment does not take advantage
of the actual fitness information and the degree of violation, which may lead to a blind random search.
MOT employs two approaches:

• the penalizing constraint, and

• the hard constraint.

2.6.1 Penalizing Constraint

The penalizing factor is defined as follows:

δ(x) = 1 −
1
J

J∑
j=1

max
[
0, gnorm

j (x)
]
. (36)
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Figure 11. The crowding distance is determined by half of the perimeter of the enclosing cuboid with
the nearest neighboring samples in the same front (rank) [5].

This penalizing factor should give 1 if there is no constraint violation and 0 for a complete violation. In
weighted sum aggregation approaches (SA,APSO) the penalizing factor is multiplied by the appropriate
fitness,

F(x) = δ(x)F(x) (37)

while in Pareto the nondominance sorting approach (MOAPSO), the penalizing factor is multiplied by each
objective metric.

The normalized constraint function gnorm
j (x) is defined as follows:

gnorm
j (x) =

A j − g̃ j(x)

A j − g̃min
j

(38)

or

gnorm
j (x) =

g̃ j(x) − B j

g̃max
j − B j

. (39)

Specifying values for g̃min
j and g̃max

j is similar to that of f min
k and f max

k , as explained in previous section.

This approach may favor a greater fitness value with a small constraint violation over a lower fitness value
without any constraint violation. This could present a problem if the constraint absolutely cannot be
violated. Therefore, hard constraint is introduced in MOT.

2.6.2 Hard Constraint

Hard constraint becomes the first priority in optimization: whenever hard constraint is violated, the
optimization problem is switched to minimize the hard constraint violation degree. The hard constraint
violation degree is defined as a function, and with this function, a minimization problem is performed if
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there is any violation. When there is no hard constraint violation, the usual fitness maximization is used.
The violation degree function is defined as the following:0

D(x) =

J∑
j=1

max
[
0, gnorm

j (x)
]

(40)
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3 METAHEURISTIC OPTIMIZATION TOOL

MOT consists of 3 major python classes collected in the python MOT package: Perturber, Fitter, and
Method∗. The MOT can be obtained from the following git repository:
https://code.ornl.gov/ybb/MOT.git. The repository is currently accessible to people with an
invitation, but is planned to be openly accessible in the near future. This section provides a brief discussion
of the object of each class. A more detailed discussion is provided in Section 4, including examples.

The manner in which the objects are connected when performing optimization is depicted in Figure 12.
Users define the optimization problem by supplying descriptions of each search variable in Perturber and
supplying user-defined <Simulation> and <Function> objects into Fitter. Then, users supply the set
up Perturber and Fitter into the Method. The parameters of these objects may need to be set up before
they are entered. Finally, Method solves the optimization problem described by the Perturber and
Fitter, resulting in the optimum variable set.

Figure 12. MOT objects.

3.1 Perturber

The Perturber object handles and performs perturbation of the search variables. Each variable supplied
must include a label, a minimum value, and a maximum value; supplying the unit is optional. Given these
inputs, Perturber carries the information of the search variable space. The integer variable is treated by
rounding to the given real value.

Python usage - Perturber

MOT.Perturber.__init__()

MOT.Perturber.add_variable(label,min,max,unit="",integer=False)

∗Whose derived class could be any of the supported methods.
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• label [string]: label of the search variable
• min [float]: minimum value
• max [float]: maximum value
• unit [string,optional]
• integer [bool,optional]: if the variable is an integer

3.2 Fitter

The Fitter object handles the simulations and functions used to evaluate fitness of the search variable set.
Users must define each simulation as python class <Simulation> and each function as python class
<Function>. There are two typical methods to configure Fitter:

1. All of the objective and constraint metrics can be explicitly modeled as functions. The <Function>
classes are defined, and their object into the Fitter is supplied. It is not necessary to run any
simulation or set up any <Simulation> class.

2. While there are several objective and constraint metrics, they can only be obtained by extracting
information from simulation results. The simulation is run first, which is implemented as
Simulation class. The process typically includes generating an input for a simulation code
according to the given variable set and then running the simulation code with the generated code
input. Finally the Function is called to extract the metrics from the simulation results.

<Function> class

<Function> is a user-defined python class in which the __call__ method takes a list of variables and
returns a scalar metric. This can be an objective and/or a constraint metric. Each <Function> class must
have name and unit string attributes, and may have __init__ method. The template or minimum
requirement for the Function class is provided below:

class <Function>():
name = <name>
unit = <unit>

def __call__(self,<list_of_variables>):
<procedures...>
return <scalar_metric>

[IMPORTANT] The variables supplied to Perturber must be in the same order as the list of variables
passed as argument in <Function> and <Simulation>.

<Simulation> class

Simulations are optional and run in order one time at each search iteration evaluation. Simulation is a
user-defined python class, and its __call__ method takes a list of variables and performs the
simulation procedure based on the given variable set. The <Simulation> class must have a name string
attribute, and it may have __init__ method. The template or minimum requirement for the Simulation
class is provided below:

class <Simulation>():
name = <name>
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def __call__(self,<var>):
<procedures...>

Python usage - Fitter

MOT.Fitter.__init__()

MOT.Fitter.add_simulation(simulation)

• simulation [<Simulation>]: simulation used for search variable set evaluation.

MOT.Fitter.add_function(function, weight=1.0,
limit_min=−∞, limit_max=∞, limit_hard=True,
norm_min=0.0, norm_max=1.0)

• function [<Function>]: objective and/or constraint metric function evaluating the search variable
set

• weight [float,optional]: weight of importance; set to zero if the function is a pure constraint
metric

• limit_min [float,optional]: minimum constraint; default means no constraint
• limit_max [float,optional]: maximum constraint; default means no constraint
• limit_hard [bool,optional]: the constraint type; True means hard constraint, penalizing otherwise
• norm_min [float, optional]: maximum possible value of the metric for normalization
• norm_max [float,optional]: maximum possible value of the metric for normalization; default values

for norm_min and norm_max give an un-normalized function in the calculation of combined fitness
and violation degree

3.3 Method

Method is a super-class of the supported optimization method’s subclass, SimulatedAnnealing, APSO,
and MOAPSO. New methods may be added by defining a new subclass of the Method class. The attributes
inherited from the subclasses are the following:

• self.name [string]: name of the method
• self.populational [bool]: whether the method is populational or trajectory
• self.var_best [list]: the optimum variable set
• self.value_best [list]: metrics of the optimum variable set
• self.fitness_best [float]: fitness of the optimum variable set
• self.var_stored [list]
• self.value_stored [list]
• self.fitness_stored [list]

The first two attributes must be specified by each subclass. The remaining attributes are the outputs of the
optimization. The *_stored attributes are the optionally stored search history. Several print-out and
output handling methods are also inherited to the subclasses.

Sub-class of Method class

The template or minimum requirement for the subclass of the Method class is as follows:
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class <TheMethod>(Method):
name = <name>
populational = <True/False>

def __init__(<args...>):
<initializations...>

def search(<Perturber>, <Fitter>, <args...>,
record=False, file_name="<default_name>",
report=True, store=False)

<search_procedures...>

In __init__, the method parameters are passed as arguments. The search method solves the
optimization problem described by the passed Perturber and Fitter objects. Note that several method
setups are passed, as well, such as the number of iterations, the number of particles, etc. The remaining
arguments are output handlers, which will be discussed in the section on python usage below.

Python usage - SimulatedAnnealing

MOT.SimulatedAnnealing.__init__(T0, alpha, frac0, beta)

• T0 [float]: initial annealing temperature
• alpha [float]: annealing temperature decay factor
• frac0 [float]: initial annealing perturbation fraction
• beta [float]: annealing perturbation fraction decay factor

MOT.SimulatedAnnealing.search(Perturber, Fitter, Niter, var_init=0,
record=False, file_name="SA.out",
report=True, store=False)

• Perturber [Perturber]: Perturber object
• Fitter [Fitter]: Fitter object
• Niter [int]: number of iterations
• var_init [list,optional]: initial variable set. Default means random initialization
• record [bool,optional]: record search description, history and final results into the specified
file_name. This record file is being populated while the tool is running so the file can be used for
monitoring the running tool

• file_name [string,optional]: file name for output records. If record=False, the file is not
generated

• report [bool,optional]: reports search description and final results to the terminal. Regardless, final
results are obtainable from var_best, value_best, and fitness_best attributes.

• store [bool,optional]: stores search history into var_stored, value_stored, and
fitness_stored attributes

Python usage - APSO

MOT.APSO.__init__()

MOT.APSO.search(Perturber, Fitter, Np, Ngen,
record=False, file_name="APSO.out",
report=True, store=False,
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plot_parameters=True, Nproc=1)

• Perturber [Perturber]: Perturber object
• Fitter [Fitter]: Fitter object
• Np [int]: number of particles
• Ngen [int]: number of generations
• record [bool,optional]: records search description, history, and final results into the specified
file_name. This record file is being populated at the end of each generation while the tool is
running so that the file can be used for monitoring the running tool

• file_name [string,optional]: file name for output records. If record=False, the file is not
generated

• report [bool,optional]: reports search description and final results to the terminal. Regardless, final
results are obtainable from var_best, value_best, and fitness_best attributes

• store [bool,optional]: stores search history in var_stored, value_stored, and
fitness_stored attributes

• plot_parameters [bool,optional]: generates <file_name>.png file showing APSO parameters
(w, c1, c2) evolution in generation

• Nproc [int,optional]: number of processors used for parallel evaluation of particles in each
generation

Python usage - inspyred_optimize This class leverages the inspyred python package to perform
multiobjective optimization using genetic algorithms.

inspyred_optimize.search(Perturber, Fitter, algorithm=”, workdir=‘./’,
n=100, maxiter=100, record=True,
maximize=False)

• Perturber [Perturber]: Perturber object
• Fitter [Fitter]: Fitter object
• algorithm [str]: algorithm to use: [‘PAES’, ‘NSGA2’, ‘GA’, ‘ES’, ‘SA’, ‘DEA’, ‘EDA’, ‘PSO’]
• workdir [string,optional]: path for the output files
• n [int]: number of population
• maxiter [int]: number of generations
• record [bool,optional]: records search description, history, and final results into the specified
file_name. This record file is being populated (at the end of each generation) while the tool is
running so that the file can be used for monitoring the running tool

• maximize [bool, optional]: true to maximize the response, false to minimize the response

Python usage - scipy_optimize This class leverages the scipy python package to perform
gradient-based optimization.

scipy_optimize.search(Perturber, Fitter, algorithm=‘differential_evolution’,
workdir=‘./’, maxiter=100, record=True,
maximize=False

• Perturber [Perturber]: Perturber object
• Fitter [Fitter]: Fitter object
• algorithm [str]: algorithm to use: [‘fmin_slsqp’, ‘differential_evolution’,

‘basinhopping’, ‘brute’, ‘fmin_cobyla’]

21



• workdir [string,optional]: path for the output files
• maxiter [int]: number of generations
• record [bool,optional]: records search description, history and final results into the specified
file_name. This record file is being populated (at the end of each generation) while the tool is
running so that the file can be used for monitoring the running tool

• maximize [bool, optional]: true to maximize the response, false to minimize the response

3.4 PYTHON REQUIREMENT

MOT works with either Python2 or Python3. The required packages are the following:

• conda install numpy
• conda install tabulate
• conda install matplotlib
• conda install -c anaconda scipy
• conda install -c conda-forge inspyred

These modules can be also installed with pip install.
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4 EXAMPLES

Besides the MOT python package file MOT/MOT.py, the MOT tool directory also provides several examples
collected in MOT/examples/. The first examples include optimization of test functions generally used for
verification of optimization algorithms. The last two examples discuss two practical cases in which MOT
could be useful: (1) high-end design stage with expensive, high-fidelity analysis tools for which some
limited parametric studies have been performed, but the design should be improved, and (2) low-front
design stage, in which there is still a large degree of freedom with fast, low-fidelity analysis tools.

4.1 THE TEST FUNCTIONS

This subsection provides examples for the following:

• setting up <Function> class
• setting up Perturber object with search variables
• setting up Fitter object with metric functions
• converting minimization into maximization problem
• setting up SimulatedAnnealing and APSO objects
• performing optimization search with the methods
• configuring output handling arguments: report, record, store
• directly accessing Method object attributes, (i.e. final results and stored search history)

test_functions/ provides scripts for optimization of several unconstrained, single objective,
2-dimensional test functions with known global minimum/maximum:

• Bealef function: has two well-separated minima and sharp peaks at the corners of the search space
– search space: x, y ∈ [−5, 5]
– global minimum: f (3.0, 5.0) = 0.0

• Easom Function: has several local minima, and the global minimum has a small area relative to the
search space

– search space: x, y ∈ [−100, 100]
– global minimum: f (π, π) = −1.0

• Rosenbrock Valley: the global minimum lies in a narrow, parabolic valley, making it difficult to
converge

– search space: x, y ∈ [−2, 2]
– global minimum: f (1.0, 1.0) = 0.0

• Shekel Foxholes: has 25 local maxima, testing algorithm robustness
– search space: x, y ∈ [−60, 60]
– global maximum: f (−32,−32) = 499.002

The problems listed here could be used to verify methods implemented in MOT. Examples include running
with different random number seeds, different methods, different method parameters, number of iterations,
and/or switching the store argument ON so that the search history can be obtained and the search process
can be animated for better illustration of the optimization process/algorithm.

Things to note:

• The metric functions of the problem are explicitly defined so that <Simulation> class set up is not
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needed

• The <Function> classes are provided in test_functions/functions.py

• Fitter.add_function calls are at the simplest possible form, because only one function is
considered, and there is no constraint subject in this example

• For all problems except for Shekel Foxholes, w=-1 is assigned while supplying the <Function>
object to the Fitter, as MOT is designed to solve a maximization problem

• Both SA and APSO are used here for comparison

• report, record, and store are turned OFF (feel free to play with it); final results are directly
accessed via Method object attributes

• Numpy pseudo random number generator seed is not fixed here, as the algorithms robustness may
require testing. To make it fixed, simply add np.random.seed(<integer>).

4.2 HFIR LOW ENRICHED URANIUM (LEU) CORE DESIGN

This subsection provides examples for the following:

• optimizing multi-purpose nuclear reactor design
• metric function modeling: multivariate adaptive regression splines (MARS) and multidimensional

extrapolation method (MDEM)
• setting up Fitter object with several constrained metric functions for multiobjective problem
• performing APSO search with multiple processors
• determining minimum and maximum possible metric values for normalization in calculation of

fitness and constraint violation degree

HFIR_UMo_22/ provides scripts for solving High Flux Isotope Reactor (HFIR) LEU core design
optimization, which includes a 7-dimensional optimization problem with 12 constrained objective metrics,
including operation, neutronics, and thermal-hydraulics metrics. The search variables or the selected
design parameters can be found in Table 2, while the metrics are provided in Table 3. The provided
numbers are the configuration used in the example. Further discussion regarding HFIR LEU core design is
found in the literature [8–17].

Table 2. HFIR LEU core design parameters or search variables
Design parameter [min, max]
235U loading (kg) [18.5, 26.0]
Power rate (MW) [95.0]
OFE mass ratio (%) [70.755, 79.755]
IFE flatness [0.3, 1.0]
OFE flatness [0.34, 1.22]
IFE skewness [-192.3, 274.0]
OFE skewness [-363.2, 214.6]

A series of parametric studies dividing the problem into four 2-dimensional problems were conducted as
part of the core optimization efforts. High-fidelity simulation tools were set up for the analysis. The results
of the studies provided useful insights into how the system responds to variable changes. However, the
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Table 3. HFIR LEU core design metrics
Metric [min, max] HEU core
252Cf production rate (mg/day) [1.46, -] 1.39
Cycle length (days) [26.2, 34] 26.2
Cold source moderator vessel cold flux (1014/cm2-s) [4.48, -] 4.48
Cold source moderator vessel cold flux ratio [-, -] 0.736
Reflector fast flux (1014/cm2.s) [2.89, -] 2.89
Reflector fast flux ratio [0.192, -] 0.192
Flux trap fast flux (1015/cm2-s) [1.07, -] 1.07
Flux trap fast flux ratio [0.29, -] 0.29
Curium target thermal flux (1015/cm2-s) [1.0, -] 1.0
Uranium utilization (days/kg) [-, -] 2.78
Burnout margin (-) [1.48, -] 1.61
Hotstreak equivalent gap (mils) [35.5, -] 36.95

results were limited since there are still vast, unexplored design spaces that may yield better performance.
The sensitivity of the system, along with the high dimensionality of both the search variable and the
objective metric, not to mention the imposed constrains, require a different approach to further improve the
design (further discussion on the previous study is provided in Betzler’s work [9, 10]). MOT could be
useful for improving high-end design.

It is prohibitively expensive to use MOT and have it run the HFIR LEU core high-fidelity Monte Carlo
simulations over long periods of time. A rudimentary extrapolation technique and a regression model are
employed here:

• multidimension extrapolation method (MDEM): a series of 2D interpolations designed to obtain
approximate results of the unexplored spaces in the previous HFIR LEU core study

• multivariate adaptive regression splines (MARS) [3]: a nonparametric regression technique that can
be seen as an extension of linear models and that automatically models nonlinearities and
interactions between variables

Both approaches make use of the previous study data. MDEM uses the data for the interpolation
references, while MARS uses the data to build the regression model. The use of MARS in nuclear reactor
design was proposed by Kumar [6]. An advantage offered by MARS over MDEM is that it could be fed
with new arbitrary information and thus would yield an improved model. HFIR_UMo_22/HFIR_MARS
provides the information, data, and scripts used for generating the MARS model, while
HFIR_UMo_22/mdem_data contains previous study data used by MDEM.

Once MOT provides a result, the high-fidelity simulation is performed for the proposed variable set for
verification. If the proposed variable set does not yield the optimum performance as proposed, then the
model is a poor approximation. MARS offers the opportunity to improve the model by supplying the new
information and then running the MOT optimization again, possibly using an iterative scheme.

Things to note:

• Since the objective and constraint metrics are explicitly defined by MARS or MDEM model,
<Simulation> class set up is not needed.

• The models are implemented as <Function> class and collected in HFIR_UMo_22/functions.py
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• Separate scripts for running with MDEM and MARS are provided

• Hard constraints are used for the metric functions

• Maximum and minimum possible values of each metric are obtained as discussed following this list

• Parallel particles evaluation with multiple processors is performed by APSO

• Some procedures for finding the maximum and minimum possible metric values used for
normalization of function and constraint violation degree are provided at the bottom of the scripts
below. This is basically resetting weight of importance and constraints so that only the unconstrained
maximization/minimization of each metric is considered separately.

4.3 SIMPLIFIED HFIR LEU CORE DESIGN - RING CONFIGURATION

This subsection provides examples for the following:

• setting up integer variables
• setting up <Simulation> class to perform simulation for search variable set evaluation

HFIR_UMo_22_Ring/ addresses the simplified ring configuration HFIR LEU core optimization, which is a
5-dimensional optimization problem with a constrained objective metric. This simplified version converts
the HFIR LEU core into a 1D radial core. The outer and inner fuel element regions are blended into one
region, comprising alternating water and fuel ring plates. The inner experimental region is assumed to be
homogenized Zirc-4, and the outer experimental region is assumed to be homogenized natural beryllium.
The design parameters (search variables) include the number of fuel rings (integer), fuel thickness,
cladding thickness, and flatness and skewness of water channel thickness relative distribution. The metrics
include k-eigenvalue (maximize with minimum constraints of 1.3), flux trap region flux (maximize),
reflector region flux (maximize), and power peaking factor (minimize)

Things to note:

• A simulation, SCALE/TXSDRN, is performed for variable set evaluation. The simulation class,
HFIR_TXSDRN, is collected in HFIR_UMo_22_Ring/simulations.py. Several python functions
used to generate TXSDRN input from a template txsdrn.tmp are also included based on the given
variable set

• <Function> classes only extract the information from TXSDRN results to obtain the metrics

• Parallel particles are evaluated with multiple processors using APSO. Note that processor IDs are
passed on for generating different TXSDRN working directories to avoid any race condition
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5 FUTURE DEVELOPMENT

There are several plans to further improve APSO:

• The implemented ELS hinders APSO parallel performance: ELS requires an additional evaluation
after parallel evaluation of the particle population is performed. This ELS procedure needs to be
improved or replaced. ELS adds a mutation procedure into APSO, which helps to avoid premature
convergence to a local optima. An idea is to introduce decaying mutation (by a normal perturbation)
to the velocity parameters (w, c1, c2).

• Parallel performance of APSO can be improved further: currently, job distribution is performed at
each iteration. This could be improved, especially for large numbers of particles, by calculating each
particle’s mean distance to all the other particles d in calculation of evolutionary factor f performed
at each iteration.

• A variable is clamped if it exceeds the limit. This may yield a problem: if the best particle reaches
that limit, then it attracts all the other particle to hit and fix their positions at that limit, as well,
stopping any further search on that variable. This may not be a problem if the optimum solution lies
in that variable limit, but otherwise, the only feature that could remedy this issue is the ELS. One
idea is to reflect the particle if it reaches a variable limit. This would not only avoid the fixed variable
issue, but it would also add more mutation element into APSO.

• Another way to add more mutation element and avoid premature convergence to local optima is to
introduce population topology: instead of finding and following the best particle of the whole
population, each particle could only find and follow the best particle among the nearest N particles.
This topology size N could then be grown linearly from 1 to the total number of particle population
along the iteration.

Another area of research for MOT development is to continue working on implementing multiobjective
adaptive particle swarm optimization (MOAPSO). MOAPSO uses the Pareto nondominance sorting
approach to treat the multiobjectivity of the problem. Without employing any aggregation approach,
MOAPSO yields several Pareto solutions given a sufficient number of iterations/generations [7].
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